Integral quadratic constraint ; timevarying system ; stability 積分二次約束iqc時變系統(tǒng)穩(wěn)定性
Integral quadratic constraint ; nonlinearity ; well - posedness ; stability 積分二次約束iqc非線性適定性穩(wěn)定性
The updating problems of structure models are turned into the optimization with a quadratic constraint 該方法將模型修正問題轉(zhuǎn)化為一個帶二次約束的最優(yōu)化問題。
A model updating optimization algorithm under quadratic constraints is applied to structure dynamic model updating 摘要將二次約束優(yōu)化方法應(yīng)用于結(jié)構(gòu)動力模型修正問題中。
Systems with mixed uncertainties ; perturbation bounds ; integral quadratic constraint ; parametric uncertainty ; stability checking 混合攝動攝動界積分二次約束參數(shù)不確定穩(wěn)定檢驗
More general quadratic constraints and entropy constrains of the density programming will be dealt with in this article . the two problems are widely applied in information theory , statistical mechanics , insurance business and game theory 本文討論比mdi問題更普遍的帶有二次約束和熵密度約束的廣義熵密度規(guī)劃問題,這兩類問題在信息論、統(tǒng)計力學、對策論和保險業(yè)中有著廣泛的應(yīng)用。
The stability of the feedback interconnection of a linear stable system and a bounded perturbation is studied in time domain in this paper . it s shown how a complex system can be characterized by integral quadratic constraints . and the iqc s theory in the time domain is given . for such model , a sufficient condition for the stability of the feedback interconnection is obtained , in some cases , this condition is also necessary . as the applications of the result in this paper , the problem of absolute stability is considered , then the timevarying circle criterion and other stability criteria are given 在時域內(nèi)研究了由一個穩(wěn)定的線性系統(tǒng)和一個有界因果系統(tǒng)所構(gòu)成的反饋內(nèi)聯(lián)系統(tǒng)的輸入輸出穩(wěn)定性問題,給出了時域內(nèi)的iqc的理論框架,得到了判定反饋內(nèi)聯(lián)系統(tǒng)穩(wěn)定性的一些判據(jù),同時也得出了一些必要條件。最后,作為前面結(jié)果的一個應(yīng)用,將所得的結(jié)果應(yīng)用到絕對穩(wěn)定性問題中,得到了時變的圓判據(jù)和其他的一些穩(wěn)定性判據(jù)。
The stability perturbation bounds of a single - input - single - output system with both parametric and dynamic uncertainties is studied . the parametric uncertainties of the systems are described by interval perturbation mode , and the dynamic uncertainties are characterized by an integral quadratic constraint . based on the concepts of the minkowski functional , the problem of stability perturbation bounds is discussed , and for different uncertainty structures of the systems , the infinite stability checking problem of the mixed uncertain system can be converted to finite vertex - checking results and the edge - checking results 系統(tǒng)的正向通道為帶有參數(shù)不確定性的線性系統(tǒng),其不確定性為區(qū)間攝動模式,反饋通道為由積分二次約束給出的輸入輸出不確定性加以描述。用minkowski泛函給出區(qū)間攝動模式下的攝動界的定義,并給出參數(shù)空間中混合攝動模式下系統(tǒng)攝動界的估計式。